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The short-time limit of the hydrodynamic transport properties is calculated for 
crystalline dispersions of parallel prolate spheroids using a moment expansion 
technique similar in concept to the simulation method known as Stokesian dynamics. 
The concentration dependence of the sedimentation rate, the hindered diffusivity and 
the rheological behaviour of face-centred lattices are examined for concentrations up 
to regular close packing (74 % by volume). The influence of the detailed microstructure 
of the dispersion is also investigated by considering different arrangements of parallel 
ellipsoids. Useful reference configurations are proposed as standard geometries for 
regular arrays of prolate spheroids. 

1. Introduction 
Hard-rod dispersions undergo a phase transition to a liquid crystalline state at high 

volume fractions (Onsager 1949 ; Frenkel 1987). This sudden change in the equilibrium 
microstructure, caused solely by excluded volume effects, dramatically alters the 
macroscopic characteristics of the material. Most notably, the anisotropy of the 
microscopic configuration imparts a directionality to most observable properties, 
including all hydrodynamic transport coefficients. The growing impact of liquid 
crystals on industrial and household technology drives many current research efforts 
in this area. Microstructural theories, which explain macroscopic phenomena in terms 
of the underlying physics at the mesoscale, have, in conjunction with Monte-Carlo and 
molecular dynamics simulations, already greatly expanded our understanding of these 
complex systems under equilibrium conditions (Allen, Frenkel & Talbot 1989 ; Talbot 
et af. 1990). Yet most of these works either consider fluids of hard convex bodies 
(Frenkel & Mulder 1985; Talbot et al. 1990), or neglect hydrodynamic interactions 
between the rods while recognizing that this significantly restricts the scope and validity 
of the analysis (Bitsanis, Davis & Tirrell 1988, 1990). The simulation method which we. 
introduced in two companion papers (Claeys & Brady 1993 u, b), on the other hand, is 
ideally suited to investigate the rheological properties of liquid crystalline domains. 

At high concentrations, a fluid of hard prolate spheroids spontaneously assembles 
into a structure devoid of translational order, but possessing a preferred direction of 
alignment (Onsager 1949; Frenkel, Mulder & McTague 1984). Such textures are called 
nematics. At higher densities still, it solidifies into a crystal resembling a face-centred 
cubic cell of spheres stretched along the (1 1 1)-axis (see below). In this work, we shall 
consider dispersions of spheroids characterized by perfect orientational and trans- 
lational order, whose microstructure near the maximum packing is similar to the 
t Present address: Solvay Research & Technology, rue de Ransbeek 310, 1120 Brussels, Belgium. 
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equilibrium crystal of ellipsoids. At lower densities, these systems can be viewed as 
models for liquid crystalline domains. This picture of nematics is admittedly overly 
simplified considering the complex molecular arrangement of true liquid crystals. In 
particular, the extent of translational order is very limited in real systems, and the 
particles’ alignment is far from perfect. Both factors significantly affect the macroscopic 
properties of the dispersion, such as its extensional viscosity (Claeys & Brady 1993b). 
More representative equilibrium microstructures can be generated by Monte-Carlo 
techniques or by molecular dynamics. Model constructions such as the one proposed 
here however, are valuable analytical tools as they often allow straightforward 
interpretations of complex physical phenomena. These idealized structures also serve 
as useful reference configurations, comparable to simple cubic lattices for spheres 
(Appendix A). We calculate the short-time limit of the hydrodynamic transport 
properties of these dispersions according to the methods presented earlier (Claeys & 
Brady 1993a, b). As before, the particles are non-Brownian and monodisperse. 

The following section defines the efc-geometry and elaborates on the advantages of 
this standard structure. We report on its properties in the next three sections, beginning 
with the sedimentation rate and ending with the rheological characteristics. Hindered 
diffusion in efc-crystals is also briefly discussed. The last section examines the influence 
of the detailed topology of the dispersions on their rheological properties. The relations 
between the stress in the suspension and the imposed rate of strain are compared for 
five different lattices of parallel spheroids and their differences are explained in terms 
of the geometric features of each arrangement. 

2. Definition of the efc-lattice 
The highest packing fraction attainable for prolate spheroids on a simple cubic cell 

is n/(6r2,), and hence is about 0.5% for rods of aspect ratio 10. The aspect ratio, 
rp = a/b ,  is defined as the ratio of the lengths of the major and minor semi-axes, 
respectively. It is possible, however, to achieve a density equal to the maximum for 
spheres, n/(3d2), by stretching a face-centred cubic cell of spheres in any direction by 
a factor equal to the aspect ratio of the spheroids. This transformation maps a sphere 
onto an ellipsoid without altering the volume fraction of the crystal. To preserve as 
many symmetry elements in the lattice as possible, we chose the direction of stretch to 
be perpendicular to the hexagonally packed stacks, i.e. along the (1 1 1)-diagonal of the 
original cubic cell (figure 1). This guarantees the simplest possible form for the tensorial 
properties of the crystal. We shall refer to the direction of stretch, which coincides with 
the orientation of the spheroids, as the z-axis. The system thus possesses 6-fold 
symmetry about z. Based on the invariance of the microstructure under rotations by 
in in the (x, y)-plane, and under reflections about the origin, one can show for instance 
that the fourth-rank tensor which relates the stress to the rate of strain only has three 
independent components. (Using only the tracelessness of S and E and the symmetry 
of RSE, one cannot reduce the number of coefficients below 15. For comparison, four 
coefficients are needed if the lattice is stretched in the (001) direction, and only two for 
face-centred cubic cells (Nunan & Keller 1984).) In addition, a distortion along (1 11) 
generates a structure which resembles the configuration into which fluids of hard 
ellipsoids solidify at high densities. It is thus physically realizable in this sense. 

In order to study dispersions at concentrations different from the maximum, an 
algorithm must be devised to expand the lattice. The most simple-minded approach, an 
isotropic dilatation, soon results in very uninteresting structures consisting of 
hexagonally packed sheets of spheroids separated by large gaps filled with fluid, not at 
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FIGURE 1. Expansion of a face-centred cubic lattice of spheres into an efc-lattice of spheroids. The 

direction of stretch is perpendicular to the hexagonally packed planes. 

all reminiscent of the liquid crystalline domains that we wish to model. This is a 
consequence, of course, of the marked shape anisotropy of the unit cell at the highest 
volume fraction. In order to preserve a ‘space-filling’ configuration even at low 
concentrations, we decided to expand the lattice in such a way that the surface-to- 
surface separation between nearest neighbours is the same in all directions (Appendix 
A). Although this definition is somewhat arbitrary, it offers an unambiguous way of 
constructing an ‘isotropically compact’ structure with full three-dimensional character. 
This has the added benefit that the geometry reduces to a face-centred cubic geometry 
at infinite dilution, independently of the aspect ratio of the particles. We shall call this 
type of crystalline geometry ‘expanded face centred’, or efc for short. 

The entire crystal can be built using only one spheroid per unit cell. This has obvious 
computational advantages, since the time savings associated with using the minimal 
number of particles far outweighs the cost of having a denser lattice over which to 
perform the Ewald summation (Claeys & Brady 1993b). Unfortunately, this also 
impoverishes the information content of the simulations ; indeed, because the forcing 
is periodic, the problem formulations for the self-diffusivity D, the hindered diffusion 
coefficient H and the sedimentation rate V become identical, and no meaningful results 
can be obtained for D nor H unless more particles are included in the unit cell. 
Nevertheless, because of its efficiency, we used the most elementary module, containing 
a single spheroid, for most of the results reported here. Note that the basis vectors of 
the unit cell are non-orthogonal and of different lengths, but the resulting geometric 
complications are relatively straightforward to overcome. 

3. Sedimentation rates 
The sedimentation rates for an efc-lattice of spheroids of aspect ratio 6, normalized 

by their value at infinite dilution, are displayed in figure 2, alongside their rotational 
counterparts (i.e. the rotation rates due to uniformly applied torques). From symmetry 
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FIGURE 2. Sedimentation rates of efc-lattices of spheroids of aspect ratio 6. The sedimentation 

rates are normalized by their value at infinite dilution. 

considerations, all particles fall at the same speed, and there is no coupling between 
translation and rotation. Motions along the direction of alignment are also decoupled 
from motions perpendicular to it. Furthermore, as pointed out earlier, the crystal 
possesses a 6-fold axis of symmetry and thus is isotropic in the ( x ,  y)-plane. Therefore, 
four components suffice to characterize the 6 x 6 sedimentation tensor (or collective 
diffusion tensor): c, PI, V;;., and V:. The rotational 'sedimentation rate' v;;" 
represents the angular velocity of the particles resulting from a uniformly applied 
torque parallel to their axes; V! is defined in a similar fashion.) Perhaps the most 
striking feature of figure 2 is the peculiar concentration dependence of the collective 
rotational mobility perpendicular to the rod axis. A very shallow minimum at an 
extremely dilute volume fraction (Vt reaches 0.99933 at q5 = 0.00035) is followed by 
a pronounced maximum exceeding 1 at about 21 YO solids by volume. The initial drop 
is due to the increased effective viscosity of the suspension. The subsequent rise can be 
understood by reference to figure 3, where we sketch how viscous interactions between 
the rods reinforce the particles' rotation, in a manner similar to the drag reduction 
experienced by two spheres when they fall as a doublet rather than as two isolated balls. 
At higher concentrations, however, the hexagonally packed stacks of spheroids become 
interpenetrating, and actively counteract each other, causing the collective rotational 
diffusivity to drop again. A schematic drawing similar to figure 3 would show that 
hydrodynamic interactions always act to retard the motion in the case of V;;., which 
therefore decreases monotonically with increasing volume fraction. The translational 
sedimentation rates Vtr also fall off with concentration, as expected intuitively, because 
the strong backflow overwhelms the analogous cooperative effect of hydrodynamic 
interactions. The slight upward bend in P at high packing densities is associated with 
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FIGURE 3. Illustration of the mechanism leading to enhanced collective rotational diffusivities V: 
in efc-crystals of ellipsoids. 

the neglect of multipoles higher than the torque and the stresslet, and should be 
disregarded. (Similar aphysical behaviour has been noted in simulations of con- 
centrated samples of spheres if the mean field quadrupole was not included in the 
formulation, as is the case here.) 

Symmetry arguments demonstrate why lubrication stresses affect Vo, but not V'. 
This is true for every microstructure which can be constructed using a single particle 
per unit cell. The abruptness of the drop at about 28.5% is artificial, and merely a 
consequence of our lack of knowledge concerning the O(EO) correction to the 
lubrication formulae of Claeys & Brady (1989). This O(1) constant provides the 
smooth transition from the ' far-field' behaviour to the 'near-field ', singular resistance 
behaviour as the surface separation E between two particles decreases. Without it, 
lubrication interactions must be allowed to ' kick in' at a certain threshold separation 
emax, set at 1 in these simulations. (This distance is non-dimensionalized by the 
harmonic mean of the radii of curvature at the points of closest approach.) The effect 
is quite dramatic for crystals because lubrication stresses set in at the same 
concentration for all particles. N o  discontinuity is noticeable for more random 
configurations, since the contribution of lubrication stresses to macroscopic properties 
is smeared out by averaging over the particles in that case (cf. the results on equilibrium 
hard-spheroid dispersions (Claeys & Brady 1993 b)). Moreover, the threshold emax, 
which is somewhat arbitrary, was set at an unusually high value here for illustrative 
purposes. We typically chose emax = 0.08, which is more consistent with the assumption 
underlying lubrication theory that E 4 1. In the remainder of this article, we shall 
actually suppress lubrication effects altogether (emax = 0). 

For a suspension of spheres of radius a arranged on a simple cubic lattice of volume 
fraction 4, Hasimoto (1959) calculated that 

(3.1) 
where the sedimentation velocity has been scaled by 14/6mp, with p the dynamic 
viscosity of the suspending fluid. The collective translational mobilities V' of spheroids 
on an efc-lattice do not, however, decrease quite linearly with the cube root of the 

Vt' = 1 - 1.7441, 
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FIGURE 4. Asymptotic dependence of the sedimentation rate of efc-crystals on the volume fraction 

of particles ( rp  = 6). For reference, note that the diagonal of the graph has a slope of 5. 

concentration, although this dependence is approached asymptotically (figure 4). This 
deviation is explained by the fact that the lattices do not remain perfectly self-similar 
when they are compressed, because they are constructed so that the superficial 
separation between the spheroids is uniform in three non-planar directions (vide supra). 

for all aspect 
ratios examined. The decline steepens slightly as the eccentricity of the spheroids 
increases. The maximum in V: also become higher, reaching more than 10 for 
r p  = 24 at $ x 0.21. 

The sedimentation rate VI drops faster with concentration than 

4. Hindered diffusivities 
As explained earlier, the evaluation of hindered diffusion coefficients requires the use 

of more than one particle per unit cell. Figure 5 shows the hindered diffusivities for 
translation and for rotation perpendicular to the rod axis in an efc-lattice of spheroids 
of aspect ratio 6 obtained using 1,4,8, 16 and 32 ellipsoids per unit cell. In the last case, 
one particle is subject to a force (or torque, respectively), and the remaining 31 are held 
still. The set of data with N = 1 reproduces the sedimentation rates. For both 
translational and rotary motion, the number dependence is rather mild, and the results 
for 32 particles are not much different from the ones for N =  16. The rotational 
mobility W: < V:, because the cooperative hydrodynamic interactions giving rise to 
the maximum in the $-dependence of VT are screened by the intervening stationary 
particles. For the translational motion, ZPI > VI because the backflow of fluid, driven 
by the pressure gradient balancing the forces acting on the particles, weakens (from a 
macroscopic momentum balance), becoming zero as N -, 00. 
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5. Relation between the stress and the rate of strain 
The hydrodynamic stress in a suspension of force-free particles subject to a flow with 

bulk average rate of strain E, is given by (Batchelor (1970) 

C = -pert 6 + 2pE, - nd(S>. (5.1) 

The isotropic pressure term is irrelevant in incompressible media, and the second term 
represents the Newtonian fluid phase response. The last term, proportional to the 
number density ng of particles in the dispersion, relates the hydrodynamic stress to the 
mean stresslet ( S )  exerted by the solid bodies. This stress moment can be calculated 
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FIGURE 6. Shear fields associated with the three coefficients characterizing the relation R,, 

between the stress and the rate of strain for efc-lattices (equation (5.3)). 

by contracting the appropriate elements of the grand resistance tensor (Brady & Bossis 
1988): 

(5.2) 
(This notation for the resistance tensors is standard and fairly transparent. R,, for 
instance relates the stresslets S on the particles to their motion a, which includes both 
translational and angular velocities. Similarly, 9 groups the forces as well as the 
torques exerted by the particles (Claeys & Brady 1993b).) 

By applying the transformations for which the efc-lattice is invariant (a rotation by 
571 about the z-axis, for instance), exploiting the tracelessness and symmetry of the 
stresslet S and of the rate-of-strain tensor E, and making optimal use of the 
implications of Lorentz' reciprocal theorem (Hinch 1972), it is easy to demonstrate that 
R,$,. R;;. R,, - R,,, which we shall denote by RE,, must have the following 
structure : 

( S )  = (R.7, .Rki  'RYE -R.yE) E x .  

R,, = 8xa3p{3yT(dd-@) (dd-iS) 
+y,,(dSd+TdSd+dSdr+TdSd'-4dddd) 

+ ~ , ~ ( s " s  + s"s - SS + ddS + Sdd+ dddd- dbd- 'dSd- dSdr - TdSdr)}. (5.3) 

The particle half-length a and the viscosity p of the suspending fluid are used to non- 
dimensionalize y. The unit vector d gkes the orientation of the rods, and lies along the 
z-axis. The non-standard notations SS and s"s mean 

" 
( S S ) i j l r l  = S i ,  S,, and ( S S ) i j k l  = Si, t i j l .  (5.4) 

To within at least five significant digits, the tensor RIE calculated for an efc-lattice 
using Stokesian dynamics conformed to (5.3). For isotropic suspensions, the three 
coefficients yT, yl and yl l  are equal to the scaled single-particle contribution 71 to the 
effective viscosity [i.e. RE, = 8na3,q(SS + SS - 3 8 )  so that 

perf = p( 1 + 87tu3n4 v )  = p( 1 + 6ri$y)]. 
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Solid volume fraction 
FIGURE 7. Particles' contribution to the apparent shear viscosity y,  = y(1 + 6 r 2 , # ~ , )  of efc-lattices of 
spheroids. The symbols correspond to various aspect ratios and are explained in the legend of figure 
8. Lubrication interactions have been suppressed. The data for y, would be indistinguishable on this 
plot. 

For dispersions which possess cylindrical symmetry about d (such as efc-lattices of 
spheroids), qT gives the resistance to uniaxial extension in the direction of d, q I  
indicates the stress in response to simple shearing flows with a velocity gradient parallel 
to d, and yl1 corresponds to the apparent viscosity during simple shear (or hyperbolic 
straining) in a plane perpendicular to d (figure 6) .  

At infinite dilution, (5 .3)  reduces to the expression for the stresslet exerted by an 
isolated freely mobile spheroid in a purely extensional flow. Using the symbols of 
Chwang & Wu (1975) (see also Kim 1986), we can derive the limiting forms of qT, q ,  
and y,, for very slender rods as 

n++o e + i  

qT +. - $e3a5 + (1 8 log (2rJ - 27)-' + O(ri2), (5.5a) 

(5.56) 

(5 .54  
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FIGURE 8. Extensional viscosity of efc-lattices of prolate spheroids. Lubrication interactions have 
been suppressed. The solid line represents the expansion due to Zuzovsky er al. (1983) for suspensions 
of spheres. The dilute limit expansions for r p  = 4, 16 and 300 are shown as dotted lines. 

with rp2 = 1 -e2. These asymptotic forms for the coefficients g (in the double limit 
n4 + O  and rp+  00) are remarkably accurate for spheroids with rp > 5 (Kim 1986). 
Figure 7 shows that they also provide rather good estimates of gl and ql, even for quite 
concentrated systems, since the apparent viscosity is well fitted by the line 
paPp = ,u( 1 + 2q5) for q5 up to about 10 YO if rp  3 4.t Note that this expression for papp 
is only valid for flows which do not have extensional components in the direction of 
the rod axis (i.e. E":dd = 0) since gT contributes otherwise. The coefficients gl, and gl 
are indistinguishable on the plot, but a comparison of the numerical value shows that 
gI1 < gl at low concentrations, and vice-versa at high volume fractions. 

A look at yeXt in figure 8 reveals a richer dependence on concentration and aspect 
ratio. The dramatic augmentation of the extensional viscosity which can be achieved 
by adding less than 1000 p.p.m. of fibrous material to the dispersion is obviously of 

t Similarly, it has been noted by others that the Einstein correction to the viscosity of a suspension 
of spheres, perf = ,u( 1 + @), holds well up to 10 YO by volume. 
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tremendous practical importance (Mewis & Metzner 1974). Note also the strong effect 
of the aspect ratio on the resistance of the suspension to stretch. For comparison, the 
extensional viscosity of a face-centred cubic-lattice of spheres has also been shown, 
together with the expansion to O(@) due to Zuzovsky, Adler & Brenner (1983). The 
deviation of the simulation results from this theoretical prediction at the higher volume 
fractions is real, as supported by the exact calculations of Nunan & Keller (1984), with 
which our data agree very well. The asymptotic formulae obtained from (5.5a), 
pext = p( 1 - 2r i  #as), have also been pencilled in for spheroids of aspect ratio 4, 16, and 
300. This shows that dispersions containing 0.1 % by volume of short rods may be 
called dilute, but that hydrodynamic interactions cause significant deviations from 
dilute suspension behaviour for spheroids of aspect ratio 300 at the same concentration. 
Indeed, as first suggested by Batchelor (1971), the relevant measure of concentration 
for a fibrous dispersion is n,a3 in problems for which hydrodynamic interactions are 
dominant. This is roughly the volume 'fraction' of the spheres which circumscribe the 
rods (the apostrophes emphasizing that this fraction may exceed unity). For instance, 
it is about 20 for the 0.1 YO dispersion of spheroids of aspect ratio 300 cited above. 

In 1990, Shaqfeh & Fredrickson calculated the hydrodynamic stress in a suspension 
of rods by evaluating the first and dominant term in a diagrammatic series representing 
multiple scattering events of the momentum propagator in a fibrous dispersion. Their 
rigorous treatment confirms Batchelor's main findings, and extends them to arbitrary 
orientation distributions. (Batchelor 197 1 restricted his analysis to dispersions of 
parallel fibres.) The analysis rests, however, on the assumption that the locations of the 
particles are uncorrelated. Nevertheless, it is instructive to examine our numerical 
results in the light of their theory. We have therefore recast the data as shown in figure 
9, where we plot the inverse of the stresslet component S:dd for uniaxial extension 
about the z-axis of an efc-lattice, versus the logarithm of the volume fraction. (By 
definition, see (5.3), the ordinate is equal to (8na3pqT)-' = [(pext -p)/n,]-l.) For 
aligned identical slender ellipsoids of revolution, Shaqfeh & Fredrickson (1 990) 
obtained 

(5.6) 
P e x t  8na3n In In (1 /#) 1.4389 nr as 

P = 3ln(l / i ) ( ' -  In(l/#) - m ) + 0 ( l n 3 ( l / # ) ) '  

They also proved that the inverse dependence on In (4) in this expression is intimately 
related to the occurrence of hydrodynamic screening in suspensions of rods, as 
intuitively hypothesized by Batchelor (1971). Physically, the rigid bodies oppose any 
disturbance which changes direction over distances much shorter than their largest 
dimension, even if they are neutrally buoyant and exert no net force on the fluid; i.e. 
the Fourier components of incident velocity fields with a wavelength of o(a) are 
effectively screened by freely suspended rods. This opposition to the fluid motion raises 
the viscosity of the dispersion. It is well known that the screening length y (i.e. the 
characteristic lengthscale for the decay of velocity disturbances) varies as 6-i in 
random dispersions, but that it is shorter ranged, of O(#-t), for simple lattices. This 
also holds in fibrous suspensions, and Shaqfeh & Fredrickson (1990) report for 
random dispersions of rods that (5 - (n, a)-;. To account for the difference between the 
screening lengths in ordered and disordered dispersions, we naively rescale (5.6), which 
was derived using the assumption that the positions of the rods are uncorrelated, by 
a factor 3. This is obviously ad hoc, since there is no reason to believe that the second 
and third terms in the expansion (5.6) should scale like the first. Yet we take the 
remarkably good agreement with our simulation results noted in figure 9 to indicate 
that this reasoning is at least qualitatively correct. The transition from a regime in 
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FIGURE 9. Verification of hydrodynamic screening in efc-dispersions of spheroids. The dotted line 
represents equation (5.6) multiplied by t to account for the perfect correlation of the centres of mass 
in this system. 

which the mean stresslet is independent of volume fraction (as it should be for dilute 
systems) to a concentration range where S:dd - (ln(l/$))-I is clearly apparently and 
is consistent with the idea of screening. Quite fortuitously, the break point in figure 9 
corresponds almost exactly to $rn+ a3 = O( l), as predicted by theory. 

6. Dependence on the crystal geometry 
One may wonder how representative the properties of an efc-lattice are of other 

crystal geometries. The fact that the maximum packing attainable for slender bodies 
depends so critically on the arrangement hints that the microstructure matters much 
more for spheroids than for spheres. For instance, we noted earlier that an arrangement 
of parallel impenetrable spheroids on a simple cubic lattice has a density of at most 
x/6r%, while efc structures accept volume fractions as high as x / 3 1 / 2 .  This is a 
considerable difference even for moderate aspect ratios. In contrast, body-centred 
cubic cells of sphere may be filled up to 1 / 3 x / 8 ,  which is not very different from the 
densest (face-centred or hexagonally close packed) structure. We explained in $2 how 
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FIGURE 10. Projection of the lattice geometry onto the close packed planes 
(i.e. along the spheroidal axis). The white and shaded particles are in adjacent layers in the crystal. 

to construct regular close-packed crystals of arbitrary, uniform spheroids by stretching 
the corresponding unit cell for spheres by a factor equal to the aspect ratio, and stressed 
that this transformation does not affect the packing fraction. We also showed that an 
isotropic dilution of this dense microstructure results in uninteresting ‘two- 
dimensional’ configurations as a result of the anisotropy of the unit cell at maximum 
packing, and introduced the alternative procedure of expanding the lattice by keeping 
the surface-to-surface separation between nearest neighbours the same in three non- 
planar directions. This guarantees that the dispersion possesses as much ‘three- 
dimensional character ’ as is compatible with the chosen concentration. We apply this 
technique to four types of microstructures in what follows to investigate the impact of 
the detailed crystal geometry on the macroscopic properties. One lattice will also be 
expanded isotropically in order to judge the effect of the dilatation technique on the 
transport coefficients of ordered configurations. We shall primarily focus our discussion 
on the relation between the stress and the rate of strain because of its primary interest 
in the rheology of rod dispersions. Furthermore, this characteristic can be estimated 
reliably with Stokesian dynamics (keeping only the effects of the force, torque and 
stresslet exerted by the spheroids on the fluid), and is relatively insensitive to the 
number of particles used in the unit cell (Phillips, Brady & Bossis 1988; Ladd 1990). 

Three of the five lattices considered here (figure 10) are obtained by distorting 
elementary modules of spheres, namely : 

(i) the efc-structure of the previous section, with maximum packing n/31/2, 
obtained by stretching a face-centred unit cell of spheres along (1 1 l), 

(ii) the ebc-configuration, constructed by expanding the same lattice along (001). 
This obviously has the same maximum density as the efc-variant. For r p  = 1, both 
reduce to the face-centred cubic geometry, and are indistinguishable. (They then 
become descriptions of the same packing in two different frames of reference.) Note 
that the ebc-crystal can be thought of as a staggered arrangement of spheroids placed 
on a square grid, just as the efc-lattice consists of stacks of particles distributed on a 
hexagonal mesh. In this sense, the ebc-lattice is related to the body-centred crystal of 
spheres, hence the acronym, 

(iii) the esc-structure, obtained from a simple cubic cell of spheres by stretching it 
along (001). This geometry resembles the ebc-lattice, but the stacks of spheroids are 
now facing each other instead of being offset by half a mesh size for a tighter packing. 

17-2 
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The gap width between the layers (i.e. the distance between the poles of two spheroids 
in adjacent stacks) is equal to the smallest surface-to-surface separation within the 
sheets, consistent with the convention used throughout this work (except for the isc- 
structure discussed below). The maximum density of this crystal is $r. 
A fourth crystal is built so as to bear the same relation to the efc-lattice as the esc- 
configuration vis-u-uis the ebc-lattice : 

(iv) in the smc-structure, honeycomb layers of spheroids are stacked directly on top 
of one another in a manner similar to the square arrays of particles in the esc- 
configuration. This packing is somewhat less efficient than that achieved in the efc and 
ebc crystals, and accommodates at most n/(32/3). The abbreviation smc was chosen 
because this geometry is reminiscent in a crude way of the molecular arrangement in 
a smectic A. 
The fifth and last family of crystals to be defined is 

(v) the isc-lattice, which is identical to the esc-configuration when the particles touch 
(i.e. it is a stretched simple cubic cell at closest packing), but is then expanded to lower 
volume fractions by dilating isotropically, instead of respecting the usual convention 
which stipulates that the surface-to-surface separation is the same in at least three non- 
planar directions. 
In order to accentuate the differences in the stress response of the various crystals, the 
data are presented in terms of the average stresslet q per particle (appropriately non- 
dimensionalized) rather than the apparent viscosity. As shown in the previous section, 
these quantities are related by paPp = ,u(l+6r~q571). Although we shall use the symbols 
qT, q,, and q l  to denote the flow conditions illustrated in figure 6, the tensor R,, does 
not in general have the form (5.3). Figure 11 summarize our findings for dispersions 
spheroids of aspect ratio 8. The coefficient q I  is obviously the least sensitive to the 
detailed features of the crystal geometry. A closer look reveals however, that the 
microstructures with the smallest q l  at a given volume fraction (i.e. the lattice which 
offers the least resistance to shear flows having a velocity gradient parallel to the 
direction of alignment, see figure 6) display the highest extensional viscosity (i.e. the 
largest qT). In fact, the ordering of the lattices according to q l  is exactly the reverse of 
the order obtained using qT. This correlation is not surprising since both coefficients 
are associated with flows straining the spheroids in a plane containing their axes. 

The staggered configurations (ebc and efc) display the largest ql (figure 11 a).  This 
reflects the steric hindrance to rotation brought about by interlacing the stacks of 
spheroids. This reduced orientational freedom (confirmed by comparing the 
‘sedimentation rates’ V: of the various crystals (data not shown)) increases the stress 
response of the dispersion to any shearing flow which induces a rotation in a plane 
containing d. This phenomenon is appropriate to non-spherical particles, for which a 
strong coupling exists between the stress and the rotation rate (i.e. R,, + 0). Indeed, 
a close inspection of the grand mobility tensor clearly demonstrates that the origin of 
the larger q1 for staggered configurations resides in the larger Mns for these systems. 
This effect is more pronounced for the ebc-lattice than for the efc-geometry because 
each particle has eight out-of-plane neighbours which hinder its rotation in the former 
crystal (and four in-the-plane neighbours which reinforce its motion), as opposed to six 
out-of-plane neighbours and six in the same layer for the efc-lattice. Finally, the iso- 
geometry, which leaves the largest gaps between the layers, clearly has the lowest ql, 
in accordance with the arguments above. 

Despite the aforementioned correlation between ql and qT, the physical mechanism 
responsible for the decreased extensional viscosity in staggered lattices cannot be 
traced to the coupling between the rotation rate and the stress (MQs), since this is 
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FIGURE 11 (a). For caption see p. 495. 

irrelevant for uniaxial extension. (This can best be seen by observing that the spheroid 
does not reorient when the principal direction of strain coincides with its axis.) Instead, 
the stronger resistance to axisymmetric extension of the smc- and esc-configurations is 
directly related to a reduction of the diagonal elements of ME, compared to their 
values for efc- and ebc-lattices at the same volume fraction. The analysis by Shaqfeh 
& Fredrickson (1990) and the qualitative argument justifying the cell model used by 
Batchelor (1971) to calculate the extensional viscosity of a suspension of uniformly 
aligned rods emphasize the importance of the smallest distance between the fibres 
(measured perpendicular to the particles’ axes, and not between their geometric 
centres), since this is the lengthscale for hydrodynamic screening. This is the smallest 
for isc-crystals, which have to compensate for the loose stacking of the layers by 
packing the spheroids more tightly within these layers. This lattice correspondingly has 
the highest qT. 

The response of the dispersions to simple shear in the (x,y)-plane, finally, depends 
mostly on the shortest distance between the fibres along the principle directions of the 
strain (i.e. along the compressional and extensional axes of the flow). These distances 
are listed in table 1 for all lattices at # = 0.1, and can be seen to correlate well with q,,. 
For crystals with hexagonal rather than square symmetry in the plane of shear (smc 
and efc), the separation given is the centre-to-centre distance between nearest 
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efc smc esc esc ebc ebc i sc isc 
0 An i$ f. 0 a. 0 +I 0 

v,( x 107 5.99 6.06 7.57 5.03 7.08 5.06 9.41 5.07 
r l a  0.592 0.569 0.535 0.757 0.570 0.806 0.429 0.606 

TABLE 1. Shortest centre-to-centre distance along the principal directions of strain of a simple shear 
flow for several crystal geometries at I$ = 0.1 (r, = 8). The flow direction lies perpendicular to the axis 
of the particles. r / a  is the shortest distance between the centres of the spheroids in the given 
configuration, measured at !K or in relative to the direction of flow in the plane of shear (i.e. along 
the compressional and extensional axes of the straining field). As always, a denotes the particle half- 
length. The angle 0 = 0 if the undisturbed velocity lies along the shortest vector of the lattice (figure 
10). See also figure 1 1. 

neighbours. The spacing of the particles, averaged along both the compressional and 
extensional axes of the shear, will certainly be larger for these configurations, which 
explains why the efc- and smc-lattices display lower apparent shear viscosities than 
suggested by the distances of table 1 .  
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7. Conclusions 
An extended version of Stokesian dynamics (Claeys & Brady 1993 a, b) was used to 

study the hydrodynamic transport properties of crystals of parallel spheroids over the 
full concentration range from zero to closest packing (74% by volume). These 
structures possess long-ranged orientational order, and can be viewed as models of 
liquid crystalline domains in that sense. The concentration dependence of the 
sedimentation rate reveals cooperative viscous interactions enhancing the collective 
rotational diffusion coefficient VT. This effect is lost in fibrous media, and all hindered 
diffusivities decrease monotonically with density. The variation of the extensional 
viscosity of efc-lattices with volume fraction supports the concept of hydrodynamic 
screening in suspensions of force-free rods, as proposed by Batchelor (1971) and by 
Shaqfeh & Fredrickson (1990). The effect of the detailed microstructural features was 
also investigated by calculating the rheological data for five different lattices of aligned 
ellipsoids. Two geometric characteristics seem to influence the stress response of the 
crystals the most: the shortest distance between the fibres, and the way layers of 
particles are stacked to form the dispersion (in particular, whether the sheets of 
spheroids are 'interpenetrating '). This study illustrates the role of microstructure in 
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determining the properties of suspensions, and demonstrates the effectiveness of 
Stokesian dynamics for simulations of many-body low-Reynolds-number problems 
involving rod-like particles. 

Appendix A. Basis vectors and symmetry properties of crystalline 
configurations of spheroids 

In the (theoretical) rheology of suspensions, the value and accuracy of novel 
numerical methods is often ascertained by computing the concentration dependence of 
the transport properties of face-centred cubic lattices of spheres (Zick & Homsy 1982; 
Zuzovsky et al. 1983; Nunan & Keller 1984; Brady et al. 1988; Ladd 1988). We 
propose that the regular arrays of prolate spheroids discussed in this article, in 
particular the efc-crystal, can serve a similar purpose for dispersions of elongated 
particles. Their geometry is unambiguously defined, and among the simplest which 
accept the maximum? packing fraction x/3 1 / 2  while retaining a fully three dimensional 
character at lower concentrations. Their high degree of symmetry allows general 
predictions to be made concerning their properties and may make them amenable to 
some kind of analytical treatment against which present and future simulations can be 
tested for consistency. (The calculation of the dielectric constant of a regular array of 
prolate spheroids (Lam 1990) offers hope that the advent of new mathematical tools 
will soon allow a closed-form expression for the extensional viscosity of efc-crystals to 
be derived, for instance.) We therefore consider it appropriate to carefully characterize 
these lattices here, and to discuss some of their properties. A few tables of 
representative data can be obtained from the authors or the editor. 

The close-stacked efc-lattice is derived from a face-centred crystal of touching 
spheres by stretching it by a factor equal to the aspect ratio in a direction perpendicular 
to the hexagonally packed planes (i.e. along the (1 1 1)-diagonal of the cubic cell) (figure 
1). This transformation maps spheres onto ellipsoids without altering the volume 
fraction of the array. We shall refer to the direction in which the spheroids point (which 
is also the direction of stretch) as the e,-axis, and introduce an orthonormal Cartesian 
coordinate system (el, e,, e3), with origin at the core of a particle, such that e, lies along 
a line of centres (figure 12a). Non-dimensionalizing distances by the length a of the 
major semi-axis of the spheroids, the matrix B defining the lattices can be chosen as 

B =  

The three columns of B form a set of basis vectors {bl, b,, b,} for the crystals, i.e. the 
location of the geometric centres x ,  of all particles belonging to the efc-crystal can be 
written uniquely as x ,  = B-z,, with z ,  a set of three integer coordinates. The volume 
of a spheroid is fx/ri, and that of the unit cell, IBI = 42/2/ri, giving a packing fraction 
# = x / ( 3 ~ ’ 2 ) ,  the theoretical regular close-packed limit for dispersions of ellipsoids. 

In order to study ‘ face-centred’ suspensions at concentrations other than the 
maximum, we proposed to expand the crystal from closest packing in such a way that 

t This statement has not yet been mathematically proven. Even for spheres, it has not been 
demonstrated rigorously in three dimensions that the maximum volumetric concentration compatible 
with the mutual impenetrability of the particles is ~ / 3 2 / 2 ,  the density of a close packed face-centred 
lattice (Gruber & Lekkerkerker 1987), but this is generally accepted. The problem is even more 
complex for prolate spheroids, as there is an additional degree of freedom associated with each 
particle, yet the same maximum packing fraction is usually assumed (Frenkel & Mulder 1985). 
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FIGURE 12. Definition of an efc-crystal of spheroids. (a) Projection onto the (e,,e,)-plane. The 
spheroidal axis (in the e,-direction) points out of the paper. The white particles are stacked on top 
of the shaded ones. The layer below is staggered with respect to both of the layers shown, in the 
customary ' ABCABC'-repeat structure of face-centred crystals. (b) Cross-section of the dispersion in 
the (e,, e,)-plane. 

the minimum surface-to-surface separation 6 between nearest neighbours is the same 
in three non-planar directions. This procedure maintains the ' three-dimensional ' 
character of the dispersion at all volume fractions, and is taken as the definition of an 
efc-lattice. The most obvious alternative, an isotropic dilation of the crystal, preserves 
the anisotropy present in the unit cell at closest packing, i.e. b,.e3/b,.e, = d i r ? .  For 
slender particles, this rapidly degenerates into rather uninteresting ' two-dimensional ' 
structures consisting of sheets of hexagonally packed spheroids, separated by wide gaps 
of fluid. Efc-crystals, on the other hand, converge to face-centred cubic lattices at 
infinite dilution, independent of the aspect ratio of the particles. For a chosen 6, the 
appropriate expansion factors h, in each of the three directions e, can be determined 
as follows. It is easy to see from the hexagonal pattern in the (el, e2)-plane (figure 1 2 4  
that 

and that h, = h,. To find h,, imagine a cross-section of the dispersion along the (e,, e3)- 
plane, and isolate for consideration two neighbouring particles in adjacent hexagonal 
layers (figure 12b). Label the midpoint of the line joining their centres 

6 = (h, - 1) 2 / r ,  (A 2) 

rn = hz/(d3rp) ez dih3 e3, 

and call z the point of closest approach on the spheroid at the origin. Since z belongs 
to the surface of the ellipsoid, we know that 

(z.e,)2+ri(z A e,I2 = 1. (A 3) 
The normal at that point is parallel to (z-e , )  e3 + ri[z- (z-e,)e,], which equals 
(z-e,)e,+ ri(z.e2) e2 since z lies in the (e,, e,)-plane. By symmetry, it must pass through 
rn. Hence, letting zee, = z3 and z-e, = z,, 
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The shortest distance between the ellipsoids is measured along this normal, so that also 

Squaring (A 4) and eliminating z3 using (A 3), we obtain, after a little rearrangement 
of (A 5), that 

The right-hand side has a slope of less than 1 when plotted as a function of .ziY and 
hence (A 6) can be used to generate a stable iterative scheme for z2 as limk+m zp) with 

or 

From z2.' it is trivial to calculate z3 and h3. The construction of the other four lattices 
defined in the text is fairly simple, and an appropriate set of basis vectors can be found 
as explained above for the efc-structure. 

From figure 12(a), it is apparent that the efc-lattice is invariant under a set of 
coordinate transformations. These symmetry elements imply that the material 
properties of the crystal must obey certain rules. Consider for instance a fourth- 
rank tensor Y,  which is a function of the particle configuration only, and denote 
Y O4 e, ek e, e, by I& The reflection symmetry about the origin then stipulates that 
qjkr = 0 whenever an odd number of the coordinate labels 1, 2, or 3 appear in the 
indices ijkl. Assuming that Y is symmetric in its first and last two indices and that 
I&, = Gltj (a consequence of Lorentz' reciprocal theorem in the case of RzE), this 
reduces the number of independent coefficients characterizing the material property to 
nine. The invariance of the crystal structure under a rotation by in in the (el, e,)-plane 
imposes the additional relations 

5 1 3 3  = %33Y 5 3 1 3  = &a239 5111 = q222Y (A 8 4  

5111 = 5122+25212* (A 8b) 

These can be shown by standard techniques to hold for every geometry that is 
indifferent to a rotation in the (elye2)-plane, except if it concerns 90" turns (or the 
special cases 0" and 180'). The fourth-rank tensor Y is now fully determined by only 
five components. If furthermore we require tracelessness in its first and last two indices, 
only three independent elements remain. In Rze, we called these three coefficients vT, 
r ] ,  and r ] ,  (see (5.3)). For cubic face-centred crystals, one more invariance relation 
exists, and the number of independent coefficients drops to two (Nunan & Keller 1984). 
Both the efc- and smc-lattices satisfy the symmetries used in this paragraph and their 
stress/rate-of-strain coupling is consequently characterized by three constants. The 
ebc-, esc- and isc-dispersions however, must be rotated by $I rather than in to return 
to the same orientation. This invalidates (A 8 b) so that four components are needed to 
specify R,, for these configurations. 



Suspensions of prolate spheroids in Stokes $ow. Part 3 499 

Appendix B. Some hydrodynamic transport coefficients for crystals of 
spheroids 

As explained in Appendix A, crystals of spheroids are useful reference configurations 
whose properties serve as benchmarks to test the accuracy of present and future 
simulation methods. We have therefore collected a few results on the hydrodynamic 
transport properties of orderly arrangements of spheroids in tables 2-12, which 
because of their detail are not reproduced here, but are available either from the 
authors or the Journal of Fluid Mechanics Editorial Office. 

We first discuss the relation R,, between the hydrodynamic stress and the rate of 
strain. Owing to the tracelessness and symmetry of €and S, this tensor is indeterminate. 
Following the usual convention, we define R,, uniquely by specifying that it, too, must 
be traceless and symmetric in its first and last two indices. This allows one to compact 
it into a 5 x 5 matrix Y such that 

(B 1) 

with p the viscosity of the suspending fluid and a the length of the spheroidal semi-axis. 
It follows from Lorentz’ reciprocal theorem that Y is symmetric. It thus contains only 
15 independent elements : 

qlll q l 2 2  qll2 q 1 2 3  q311 

q 1 2 2  K 2 2 2  K 212 5223 K231 

(B 2) 

For dispersions possessing a 6-fold axis of symmetry d, invariance laws imply that three 
components suffice to characterize Y (Appendix A). In terms of the coefficients r] 
introduced in (5.3), and assuming that d lies along the ‘3’  axis, it is easy to find in this 
case that 

= t T [ q l I  h!I’+V11 hT-Vl1 k $ n I I  

0 771 i )  (B 3) 
0 0 O O r ] l  

By analogy, we set r ] ,  = g ~ , , ,  + qlZz), ql1 = Kz12 and y1 = y3131 for all configurations 
in figure 1 1 ,  even though (5.3) does not hold in general. This definition of r ] ,  makes it 
equal to one third of the Trouton viscosity in uniaxial extensional flows along the ‘3 ’  
axis. For isotropic suspensions, one sees from (B 3) that Y has seven non-zero elements, 
two of which are identical because of symmetry. The six remaining components can be 
averaged appropriately to obtain a more reliable estimate of the effective viscosity, as 
done in Claeys & Brady (1  993 b). 

Lubrication interactions were suppressed in all calculations concerning crystalline 
dispersions for reasons explained in 9 3. We non-dimensionalize the transport properties 
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as follows: diffusion coefficients scale with kT/8x,uan (n = 1 for translational 
components,  n = 3 for rotary diffusivities), sedimentation rates with lfl/8n,ua and their 
rotational analogs with I Tl/8n,ua3. (F and T represents the uniformly applied force or 
torque respectively, k is Boltzmann's constant, and T the absolute temperature.) 
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